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Abstract-Macroscopic modelling of heat transfer in composites in the presence of interfacial thermal 
resistance is determined from a description at the heterogeneity scale using a method of double-scale 
asymptotic developments. The analysis shows five different models. Their domains of validity are defined 
$y the value of a dimensionless parameter. That permits the determination of the correct model for a given 
tiacroscopic boundary value problem. The models for a binary composite are shown to belong to two 

main types: one-temperature and two-temperature field models. 

1. INTRODUCTION 

Analytical studies have shown that the effective ther- 
mal conductivity of a composite depends on the value 
of the thermal conductivity, the volume fraction and 
the distribution of the individual components within 
the composite. Recent investigations have also ident- 
ified the critical role of the interfacial thermal barrier 
resistance in the effective thermal conductivity of com- 
posites [l-8]. In these studies the model to describe 
the effective behaviour is assumed to be a one-tem- 
perature field model, and the authors look for the 
effective conductivity and its relation to the interfacial 
barrier resistance. Investigations are either theoretical 
[I+!, 6, 81 or experimental [5, 71, for dilute volume 
fractions [2], low concentrations [3] or high con- 
centrations [l, 4-81. The thermal barrier is shown to 
lower the effective thermal conductivity of the com- 
posite. On an other hand two-temperature field mod- 
els are introduced to describe porous matrix-liquid 
systems [9-121 or heterogeneous solids [13, 141. Ther- 
mal barrier resistances are not explicitly introduced 
but the interphase heat transfer is equivalently 
assumed to be proportional to the temperature differ- 
ence. 

The aim of the present paper is to determine the 
influence of the interfacial thermal barrier on the 
effective thermal conductivity and on the structure of 
the macroscopic heat transfer equations. Since per- 
iodic and random micro structures lead to similar 
macroscopic behaviour [15], we assume without loss 
of generality that the composite is periodic. The 
method of asymptotic developments will be used for 
homogenization. 

Macroscopic heat transfer in periodic composites 
using the method of asymptotic developments [16, 171 
was studied in ref. [18] with the classical boundary 
conditions between the constituents, e.g. continuity of 
temperature and normal flux. The coupled problem 
of the thermoelasticity of composites was investigated 
in ref. [19]. 

In Section 2, the bases of the method of asymptotic 
developments are recalled, as is the description of 
transient heat transfer at the micro level. We assume 
a two-component composite with conductivities of the 
same order of magnitude. Sections 2-6 investigate five 
characteristic cases related to different relative values 
of the barrier resistance to the resistance of the com- 
ponents. Finally, the five corresponding macroscopic 
models are illustrated in Section 7, where a layered 
medium is investigated which permits analytical 
results. The first three models are one-temperature 
field models whereas the last two are two-temperature 
field models. Relations among the five models are 
analyzed in Section 8. We show that heat transfer in 
a given composite is not a priori described by a single 
model. The choice of model also depends on the exci- 
tation. 

2. FORMULATION OF THE PROBLEM: 

HOMOGENIZATION 

For simplicity we assume that the medium is com- 
posed of two solids. The results can be easily extended 
to IZ arbitrary solids. We consider a composite with a 
fine periodic structure. A period Y is shown in Fig. 
1. Solids 1 and 2 occupy the domains Y, and Y,, 
respectively. I- denotes their common boundary. For 
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NOMENCLATURE 

A, B dimensionless numbers 
a$, ai, conductivity of medium 1 
b,“;, b, conductivity of medium 2 
c” effective heat capacity of the composite 
Cl, Ci heat capacities of media 1 and 2, 

respectively 

Xi 
Y 

Yi 

Yi 

dimensionless slow space variable 
spatial period 
domain occupied by medium i in 
period Y 
dimensionless fast space variable. 

H effective heat transfer coefficient of 
composite Greek symbols 

h”, h interfacial thermal conductance 6, identity matrix 
L characteristic macroscopic length E small parameter of separation of scales 
1 characteristic microscopic length I- common boundary of the two media 
n partial volume of constituent 2 Ayff bulk effective conductivity of 
ni unit normal to I composite in case CL 
Q Biot number A:$, A5$f effective conductivities of media 1 
7: temperature field in medium i and 2 in case CI 
t time r characteristic time 
& dimensional space variable x: particular solution for T. 

Fig. 1. Periodic cell of two-constituent composite 

simplicity we also assume that each domain Yi, i = 1, 
2, is connected. The case where one or both of the two 
components are not connected can be easily inves- 
tigated by following the same procedure. The reader 
is referred to Section 7, where an example is shown. 

The period Y, of dimension O(I), is small compared 
to the characteristic length L of the medium submitted 
to heat transfer at the macroscopic scale: 

1 
E=L<< 1. (2.1) 

For a steady heat transfer, L can be assimilated to 
the characteristic size of the macroscopic sample. For 
unsteady heat transfer, e.g. at constant pulsation, a 
good candidate for L is 1/2n, where 1 is the wave- 
length. 

The set of equations giving the temperature at the 
micro-scale is: 

in Y, (2.2) 

(2.3) 

where ai and bt are the thermal conductivities, C;: 
and C; the volume heat capacities, and Ty and T; the 
temperature in solids 1 and 2, respectively. The super- 
script E recalls the finely heterogeneous character of 
the micro-scale. 

The boundary and initial conditions [9] are as fol- 
lows: 

aT6 aT” 
a” An, = b”.Ln, 
$1 ax, *J ax, 

on r (2.4) 

aT; 
-4jKnt, - - h"(T'; -T;) on I (2.5) 

T; = 0 T$ =0 fort = 0 (2.6) 

where n, is the outward normal to Y,, and h” > 0 is the 
interfacial thermal conductance. The conductivities, 
heat capacities and interfacial conductance are Y- 
periodic, and there exists cc > 0, with a;&tj > a[,[,, 
V[ E R3, and /I > 0 with bk&(l > B&t,, V< E R’. 

Set (2.4)-(2.8) introduces three dimensionless num- 
bers: 

(2.7) 

where the index 1 shows that the characteristic length 
1 has been used to define these dimensionless numbers, 
and z is a characteristic time for the heat transfer, 
e.g. r = 27c/o for constant-pulsation heat transfer. ]a] 
stands for an estimation of the conductivity a. It is 
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Fig. 2. Different macroscopic models with respect to Q,. 

obvious that an equivalent continuous macroscopic 
description depends on the value of these numbers. 
As already mentioned, we assume that the con- 
ductivities of the two components are of the same 
order of magnitude. Therefore A = 0( 1). On the other 
hand, a transient heat transfer is homogenizable, i.e. 
with an equivalent macroscopic description, only if 
(see ref. [20], where a similar problem is investigated 
concerning diffusion) 

B, = 0(&Z). (2.8) 

This condition shows that, for a given material, the 
characteristic time z must be sufficiently large to pre- 
serve a good scale separation. For example, con- 
sidering ‘?a harmonic excitation, decreasing 7 will 
decrease the wavelength, i.e. L. In the limit, L = O(l) 
and there is no more scale separation. An equivalent 
macroscopic description does not exist. 

Finally the Biot number Ql is a measure of the 
conductivity of the interfacial barrier with respect to 
the conductivity of the components. The cases of inter- 
est are 

Q/=0@‘) p= -1,0,1,2,3 

corresponding to models I, II, III, IV and V, respec- 
tively (Fig. 2). Hereafter the superscripts I-V refer 
to these models. With the above estimations of the 
dimensionless numbers and the dimensionless space 
variable y = X/l, the dimensionless micro-description 
is: 

in Y, (2.9) 

in Y, (2.10) 

on I (2.11) 

-cz;F,,~ = $h”(T; - Tg) on I (2.12) 
/ e 

T;: =0 T; = 0 fort = 0 (2.13) 

where, for the sake of simplicity, the notation is left 
unchanged. 

The macroscopic behaviour of the heat transfer is 
measured using the homogenization method [ 155171 
based on an asymptotic expansion of the power of the 
small parameter E and including a double scale with 
characteristic lengths I and L. These characteristic 
lengths introduce two dimensionless space variables, 
y = X/l and x = X/L. The variable y is the -micro- 

scopic one, describing the small heterogeneities, while 
x is the macroscopic space variable. The temperature 
T” is a function of the two space variables, x and y: 

T” = T(x, y) x = sy. 

For simplicity we assume that the composite is strictly 
periodic: 

a; = C$(y) b,’ = b,(y) c;: = C,(y) 

c; = C*(y) h” = h(y). 

Then we search for an asymptotic expansion for T” of 
the form 

Tj(x, y) = Tf (x, y) + ET! (x, y) + 

x=&y i=1,2 (2.14) 

where Tf(x, y) are Y-periodic functions in y. 
The method consists in incorporating expansion 

(2.14) into the dimensionless set, identifying the simi- 
lar powers in E and solving a set of boundary value 
problems in a characteristic cell Y. In the computation 
we must take into account the fact that x and y should 
be considered as independent variables and that the 
derivation operator is now expressed by 

aT” aT dT 
-zz 

aYi G +&ax,. 
The homogenization process, E + 0, produces a set 

of equations satisfied by To, which in fact represent 
the macroscopic behaviour of the heat transfer in our 
composite. This formal computation was described 
completely from the mathematical point of view by 
the so-called “two-scale convergence”. For details see, 
for example, refs. [21, 221. 

For the first order of approximation, model I with 
Ql = O(EC’) corresponds to a classical composite 
without barrier resistance. It is easy to check that 
the successive sets of boundary value problems to be 
solved are similar to those in ref. [18, Section 31, with 
an added transient term as in ref. [20]. Therefore the 
macroscopic description is 

(2.15) 

The superscript I refers to model I. A tilde shows a 
volume average: 

1 
YE- 

]Y] y.dy. s 

The effective conductivity 15’ is also a volume average 
given by 
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CI = a in Y, and b in Y, 

where the vector x1 is Y-periodic and verifies the 
boundary value problem 

i[Utj(h,k+z)]=O inY ai=0 

It is easy to show that the cases Q, = O(?), p < - 1, 
are described by model I. 

3. MODEL II: 0,=0(l) 

Starting from the classical case I, we increase the 
barrier resistance to Qr = O(1). Expansion (2.14) will 
now be introduced into equations (2.9)-(2.12). 

These equations at order a0 give: 

&[aiAY)~]=O YEYI 

$[hi,(S)$]=O YEY, 

aij(y)znl = b,(g)$n, YEl- 
1 I 

-aij(y)dTPn,, = h(Ty-Ti) yfr 
ay, 

Ty and Tt Y-periodic. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

It is easy to observe that the only periodic solution of 
the problem is Ty = Ty (t, x), Ti = Ti(t, x). Then, 
with equation (3.4), Ty(t,x) = Tz(t,x) = T”(t, x). 

Equations (2.9)-(2.12) at order E give: 

-aJy)(z + z)nli = h(T:.-T:) YET 

(3.9) 

Ti and TA Y-periodic. (3.10) 

Set (3.6)-(3.10) represents a linear differential prob- 
lem with respect to the variable y. The unknowns Ti 

and T: are linear functions of the gradient, aT’/ifJx,, 
to an arbitrary additive y independent function: 

aTo 
T’ = x:Iax, +i;‘(t,x) (3.11) 

where T’ stands for Tf and T: in Y, and Y,, respec- 
tively. The superscript II refers to model II. The func- 
tions xf’ are h-dependent. They are given by the fol- 
lowing cell problem, where x’,‘~ and x$ stand for x!j 
in Y, and Y,, respectively: 

(3.12) 

(3.13) 

a,?!!!!%n.=b_!!&n_ onI 
‘1 ayj 1 ‘J ayi 1 

(3.14) 

ax:: alj---nl,+&&x$J = -aiknli on r ?v j (3.15) 

where xi,Ik and x& are Y-periodic. 
The last step in the computation of the macroscopic 

behaviour is now to consider equations (2.9)-(2.11) 
order a? 

Integrating the first two equations on Y1 and Yz, 
respectively, using the divergence theorem and the last 
equation, gives the following macroscopic behaviour: 

(3.16) 

where the effective conductivity Aipff is obtained from 

a=ainY,andbinY,. 

It is important to remark that the effective thermal 
conductivity depends on h. That means that, at the 
macroscopic scale, we must consider not only the 
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values of the thermal conductivities of the constitu- 
ents, the volume fraction and the geometry of the Tf = x::‘g + i=; (t, x) T; = x::‘g + i;:(t, x). 

composite, but also the interfacial thermal barrier 
I 

resistance. Nevertheless, the structure of model II 
(4.8) 

[equation (3.16)] remains classical, i.e. the heat trans- The macroscopic behaviour is obtained for the fol- 
fer is described at the macroscopic scale by only a one- lowing order as in Section 3. It becomes 
temperature field. 

4. MODEL III: Q,=Ok) 

c-_- 1.1!lcff!c _aTo a ( ) at ax, 11 axi (4.9) 

Let us again increase the thermal barrier resistance. Now the effective conductivity is the sum of the effec- 

Now p = 1 and Q, = O(E). The homogenization tive conductivities of the two constituents, which are 

process, presented in detail in Section 3, is the same. assumed to be perfectly insulated: 

For this reason we limit ourselves to the main points. 
For order so equations (2.9)-(2.12) give 

,y = $l$ff + gy 

T: = T:(t,x) T; = T;(t,x). (4.1) 

For order E, we obtain the boundary value problem 
for Ti and T:, which are Y-periodic: 

&j($$+!$)]=O YEY, (4.2) 

l;Ffr = + [~l~lj(d,,+ g)dy. 

The macroscopic behaviour is classical, with a one- 

&[h,,(g)(~i$$]=O YEY, (4.3) 

temperature field and an h-independent effective con- 
ductivity, but the thermal barrier resistance is 
sufficient to insulate the two constituents at the first 

YEI- (4.4) 5. MODEL Iv: Q,=O(E~) 

-ail(y)(~+~),ilr=h(T:-T:) yel-. 

We again increase the thermal barrier resistance by 
a power of a. As above the first order gives 

(4.5) T: = T:(t,x) T; = T;(t,x). (5.1) 

We obtain two non-coupled problems for Ti and T:, Compared to the result in Section 4, the next order 
i.e. equations (4.2), (4.5) and (4.3), (4.6), respectively, for Tf and T: is given by equations (4.2)-(4.4) and 
where equation (4.6) is derived from equations (4.4) relation (5.2) instead of equation (4.5): 
and (4.5): 

-a&)(2 + z)nli = 0 YEI-. (5.2) 

YEI-. (4.6) The solutions therefore are similar to the solutions in 
Section 4, but with Ty(t, x) # Tt (t, x): 

Problem (4.2), (4.5) introduces a compatibility con- 
dition easily obtained by integrating equation (4.2) on 
Y,, using the divergence theorem and the boundary 

T1 = xIv aTy I F, (t x) 
’ “axi l’ 

condition (4.5). It yields * 

s s 

T; = x;;z + F;(t, x) (5.3) 
h(T:-T;)ds=(T:-T;) hds=O 

I I- 
with x:y = x’$, xi‘: = x::‘. 

and, since h is a positive quantity: For order a2 it becomes 

T;(t,x) = T;(t,x) = T’(t,x). (4.7) a 
Relation (4.7) also represents the compatibility con- 

G[aU(Y)E+z)] 

dition of problem (4.3), (4.6). 
The solutions of the two cell problems are therefore 

independent of h. They can be put in the form 
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By integrating the first and third equations on Y, and 
Y,, respectively, one obtains two coupled macroscopic 
equations for the two temperature fields, Ty and Tz: 

(5.4) 

(5.6) 

The macroscopic behaviour is now a two-temperature 
field description. As in Section 4 the effective con- 
ductivity of each constituent is obtained by con- 
sidering it as being insulated. 

6. MODEL V: Q,=O(d 

Finally we investigate the case where the thermal 
barrier resistance is very large, Q, = O(E~). By fol- 
lowing the same procedure again it is obvious that the 
macroscopic behaviour is given by equations (5.4) and 
(5.5), but without the source terms: 

(6.1) 

(6.2) 

with JyGff = 1::” = a;F., aTEff = a\y = a:J:eff. 
For the first order of approximation the thermal 

fluxes in the two constituents are independent. There 
is a continuous passage from model IV to model V on 
removing the interfacial conductance h. On an other 
hand, it is easy to show that Q, = O($), p > 3, also 
leads to model V. 

7. BILAMINATED COMPOSITE 

Consider the particular geometry of a periodic 
layered medium (Fig. 3). This very simple geometry 

-(l-n) \ 
. 

a 
1 

0 y 2 
F 

b 

Fig. 3. Bilaminated composite. 

is interesting to investigate because it permits ana- 
lytical results, and because more realistic composites 
present similar general behaviour. The constituents 
are not connected in direction y,. II denotes the volume 
fraction of component 2. I is the period in direction 
X2, i.e. 1 is the period in direction y2. Each constituent 
is assumed isotropic and homogeneous, with con- 
ductivities a and b for constituents 1 and 2, respec- 
tively. The medium exhibits a symmetry of revolution 
around the y,-axis. Therefore in all cases we have 

2” = n;f; 22 1;; = /zc,f; = a;; = 0. 

The classical case, model I, has been already inves- 
tigated in ref. [18]. The effective conductivity was 
shown to be given classically by 

nl,;f= (l-+~+nb ay:f = no+~~_-njh. 

Considering model II, it is easy to check that the 
conductivity in direction y, is unchanged: 

a!;” = agf = (I-FZ)~+~Z~. 
In direction y, one obtains 

1 AIIeff = ~ II 

&+; 
11 

which is similar to relation (13) in ref. [2]. 
Decreasing the thermal barrier resistance, i.e. 

increasing h, leads continuously to model I. 
Model III shows the influence of the non-con- 

nection of the components. For the first order of 
approximation the composite is not a conductor in 
direction yI. In the other directions, due to the par- 
ticular geometry, and the homogeneity and isotropy 
of the components, the conductivity is unchanged: 

*I 1 
1Illeff = 0 

ameff = 
22 ay = al,;f = (I -n)a+nb. 

When h becomes zero 1y becomes lfpff and at the 
same time model II gives model III. However, model 
III does not yield model II with increasing h. 

Finally, models IV and V introduce the following 
effective parameters: 
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Model V is obtained from model IV by putting h = 0. 
However, there is no continuous passage to model 111. 

8. CONCLUDING REMARKS 

The macroscopic description of heat transfer in a 
composite with thermal barrier resistance on the inter- 
face of the components has been shown to strongly 
depend on the relative value of the barrier resistance 
with respect to the resistance of the components. Five 
very different macroscopic models are obtained whose 
domains c$ validity are related to the value of the 
dimensionless number Ql = (hl)/lul. They are shown 
in Fig. 2. 

Following the analysis in Section 7, the five models 
can be regrouped into two classes. The first class com- 
prises models I-III. The most powerful model is model 
II since it gives models I and III on increasing or 
decreasing h, respectively. The second class contains 
models IV and V. Here the most powerful model is 
model IV which yields model V on decreasing h. There 
is no continuous passage from one class to the 
other. 

The value of Ql has to be determined as a function 
of the power of the small parameter E that measures 
the scale separation. Q2 is well defined from a knowl- 
edge of the micro structure of the composite. On the 
contrary, the value of E requires the value of the 
characteristic macroscopic length L. This depends on 
the size of the sample or is related to the magnitude 
of the macroscopic gradient of the temperature since,, 
roughly: 

For example, in the case of a wavy temperature field 
of wave length 1, a good approximation of L is 

L==g. 

Changing L will change E so that the value of Ql 
with respect to the power of E could be modified. 
Consequently, the correct model to describe the 
macroscopic behaviour would also be changed. There- 
fore, the macroscopic model of a given composite 
depends on the size of the macroscopic sample and on 
the excitation. 

, 

Finally it is worthwhile noticing that the macro- 
scopic model for an n-constituent composite in cases 
IV and V is an n-temperature field model. 
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